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Abstract 

The concept of weakly-Chebyshev subspace is defined by Mohebi and Mazaheri. 
In this paper, we can replace the function .  by a function f with least 

conditions, and also we shall define f-weakly Chebyshev subspaces similar to 
weakly Chebyshev subspaces and we shall obtain the same theorems and results 
at about these subspaces. 

1. Introduction 

Let X be a Hausdorff topological vector space over a field F and f is 
continuous function on X with the following conditions: 

(1) ( ) ( ),xfxf α=α  for all Xx ∈  and scalar .α  

(2) ( ) ( ),xfxf =−  for all .Xx ∈  
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(3) f is convex, that is, ( )( ) ( ) ( ) ( ),11 yfxfyxf λ−+λ≤λ−+λ  for all 

Xyx ∈,  and .10 <λ<  

An element Kk ∈0  is said to be an f-best approximation to x in K, if 

( ) ( ) ( ){ }.:inf0 KkkxfKxfkxf ∈−=−=−  

We denote by ( ),, xP fK  the collection of all such .Kk ∈0  The set K is said 

to be f-proximinal, if ( )xP fK ,  is non-empty for each Xx ∈  and f- 

Chebyshev, if ( )xP fK ,  is exactly singleton for each .Xx ∈  

Let K be a non-empty closed subset of X. We define 

{ ( ) ( )} { }( ),0:ˆ 1
,
−=−=∈= fKf PKxfxfXxK  

it is clear that ( ),,0 xPg fK∈  if and only if .ˆ0 Kgx ∈−  Suppose .0>r  

Then we put 

( ){ }.: ryxfXySr ≤−∈=  

We say the set K is f-bounded, if there is 0>r  such that ( ) rkf ≤  for 

every .Kk ∈  

The set K is said to be f-boundedly compact, if for each Xx ∈  and for 
each rSKr I,0>  is compact. 

By using the existence of elements of f-best approximation in 
Hausdorff topological vector spaces, certain results on fixed points were 
proved by Pai and Veermani. There are some results on f-approximation. 
In this paper, we shall obtain some relations between f-weakly 
Chebyshevity of the quotient spaces and its f-best-proximinality subsets 
of X. Also, the relations between the upper semi-continuous of metric 
projection fKP ,  and f-weakly Chebyshev subsets of X are discussed. 

Let X and Y be non-empty sets. The collection of all non-empty 
subsets of X is denoted by .2X  A multifunction or set-valued function 
from X to Y is defined to be a function that assigns to each element of X, a 
non-empty subset of Y. If T is a multifunction from X to Y, then it is 
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designated as ,2: YXT →  and for every TxXx ,∈  is called a value of 
T. For ,XA ⊆  the image of A under T denoted by ( ),AT  is defined as 

( ) .: TxAT
Ax
U
∈

=  

For ,YB ⊆  the preimage or inverse image of B under T, denoted by 

( ),1 BT −  is defined as 

( ) { }.0::1 /≠∈=− BTxXxBT I  

If ,Yy ∈  then ( )yT 1−  is called a fibre of T. 

In what follows, it will be assumed that X and Y are topological 
spaces. A multifunction YXT 2: →  is said to be upper semi continuous, 

if for every closed subset C of Y, its inverse image ( )CT 1−  is closed in X. 

It is known that if YXT 2: →  is an upper semi continuous 
multifunction with compact values, then ( )KT  is compact in Y, whenever 
K is a compact subset of X. Let X be a topological space, f is a nonnegative 
function on X with the property ( ) ( )xfxf α=α  for each scalar α  and if 

,0≠x  then ( ) .0≠xf  Also define for ∗∈Λ X  

( ) { ( ) ( ) }.,1:sup Xxxfxf ∈=Λ=Λδ  

We define 

{ ( ) ( ) ( ) }.1,:, ==Λ∈=Λ xfxfxXxM f  

It is clear that fM ,Λ  is closed, f-bounded, also if f is convex, then fM ,Λ  

is convex. 

We start with the following lemmas which need in the proof of new 
results. 

Lemma 1.1. Let X be a topological vector space, and K be an f-
proximinal subset of X. Then, fKP ,  is upper semi continuous, if and only 

if fKF ˆ+  is closed for every closed set F in K. 



H. ARDAKANI and H. MAZAHERI 242

Lemma 1.2. Let K be an f-proximinal subset of a topological vector 

space X. If fK̂  is f-boundedly weakly, then, the following are true: 

(1) fKP ,  is upper semi continuous. 

(2) ( )xP fK ,  is compact for each .Kx ∈  

Lemma 1.3. Let X be a topological space, Y be a closed subspace of X, 

and .0 Yg ∈  Then ( )xPg fY ,0 ∈  iff there exists ∗∈Λ X  such that 

( ) ( ) ( ) .0,,1 00 =Λ−=−Λ=Λδ Yf gxfgx  

Lemma 1.4. Let X be a topological space, Y be a closed subspace of X, 
,YM ⊆  and .\ YXx ∈  Then, the following statements are true: 

(1) ( )., xPM fY⊆  

(2) There exists ∗∈Λ Xa  such that ( ) ( ) =−Λ=Λ=Λδ gxYf ,0,1  
( )gxf −  for every .Mg ∈  

Definition 1.5. Let X be a topological space, Y be a closed subspace of 
X. If ( )xP fY ,  is a non-empty and weakly compact set in X for every 

,Xx ∈  then Y is called an f-weakly Chebyshev subspace of X. 

2. New Results 

Theorem 2.1. Let X be a topological space and let Y be an f-

proximinal subspace of X. If fM ,Λ  is weakly for every ,0 ⊥∈Λ≠ Y  then 

Y is f-weakly Chebyshev in X. 

Proof. Let YXx \∈  and { } 1≥nng  be an arbitrary sequence in 

( )., xP fY  Then, by Lemma 1.4, there exist ( ) ,1, 00 =Λδ∈Λ ∗
fX  

,00 =Λ Y  and ( ) ( ) ( ).,2,1,0 K=−=−Λ ngxfgx nn   

Let ( ),,2,1 K=−= ngxx nn  then ( ) ( ) ( )Yxfxfx nn −==Λ0  for all 

.1≥n  Put 
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( ) ( ) ( ).,2,1, K=
−

== nYxf
x

xf
xz n

n
n

n  

Then { } 1≥nnz  is a sequence in ( ) ,1,,0 =Λ nf zfM  and ( ) ( ).1 00 Λδ==Λ fnz  

Since fM ,0Λ  is weakly compact, hence there exists a convergent 

subsequence { } 1≥knkz  of { } 1≥nnz  such that .,0 0 fn Mzz k Λ∈→  

Therefore, we have ( )Yxfzx kn −→ 0  and hence ( )Yxfzxg kn −−→ 0  

.Y∈  But ( )xP fY ,  is closed, then ( ) ( ).,0 xPYxfzx fY∈−−  ■ 

Theorem 2.2. Let X be a Banach space and let Y be a proximinal 
subspace of X with codimension one. Then, the following are equivalent: 

(a) Y is weakly-Chebyshev in X. 

(b) Each sequence { } 1≥nny  in X with 1=ny  and ( )nfY yP ,0 ∈  

( )K,2,1=n  has a weakly-convergent subsequence. 

(c) fM  is weakly weakly for every .0 ⊥∈≠ Yf  

Proof. (a) ⇒  (b). Assume that Y is weakly-Chebyshev in X, { } 1≥nny  

is any sequence in X with 1=ny  and ( ).0 , nfY yP∈  Since codim 

,1=Y  there exists Xx ∈0  such that .0xYX ⊕=  Therefore, there 

exist a sequence { } 1≥nnz  in Y and a sequence { } 1≥β nn  of scalars (note 

that 0≠βn  for all K,2,1=n ) such that 

( )⋅=β+= K,2,1,0 nxzy nnn  

Now, we have 

( ) ( )YzydYxd n
n

n
n

,11,0 β
−

β
=  

 ( ) ( )YydYyd n
n

n
n

,1,1
β

=
β

=  
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 ,11
n

n
n

y
β

=
β

=   ( )∗  

and 

,111
0

n
n

n
n

n
yzx

β
=

β
=

β
+  

for all .1≥n  It follows that { } 1
1

≥β
− nn

n
z  is a sequence in ( ).0, xP fY  

Since ( )0, xP fY  is weakly weakly, { } 1
1

≥β nn
n

z  has a weakly-convergent 

subsequence. Also, it follows by ( )∗  that { } 1≥β nn  is a bounded sequence of 

scalars. Hence, { } 1≥nnz  has a weakly-convergent subsequence. Thus, 

{ } 1≥nny  has a weakly-convergent subsequence in X. 

(b) ⇒  (c). Suppose ⊥∈≠ Yf0  and { } 1≥nny  is an arbitrary sequence 

in .fM  Then we have 

( ) ( ).,2,1,1and K=== nyfyf nn  

Let .0 f
ff =  It follows that ,0,1, 000 ==∈ ∗

YffXf  and ( ) 10 =nyf  

ny=  for all .,2,1 K=n  Then, by Lemma 1.4, ( )nfY yP ,0 ∈  and 

( ).,2,11 K== nyn  Now, by hypothesis, { } 1≥nny  has a weakly-

convergent subsequence in X. That is, there exists { } 1≥knky  such that 

.0 Xyy w
nk ∈→  Since fYM ,  is closed and convex, fYM ,  is weakly 

closed and hence .,0 fYMy ∈  Then, fYM ,  is weakly weakly. 

(c) ⇒  (a). This is a consequence of Theorem 2.1. ■ 

Theorem 2.3. Let X be a topological space, Y be an f-proximinal 
subspace of X. Then, the following two conditions are equivalent: 

(1) Y is f-weakly Chebyshev. 
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(2) Each sequence { }ny  in X with ( ) ,1=nyf  and ( )nfY yP ,0 ∈  has a 

convergent subsequence. 

(3) For each ,⊥∈Λ Y  we have fM ,Λ  is weakly compact. 

(4) fYP ,  is upper semi-continuous. 

References 

 [1] Darapaneni Narayana and T. S. S. R. K. Rao, Some remarks on quasi-Chebyshev 
subspaces, J. Math. Anal. Appl. 321(1) (2006), 193-197. 

 [2] H. Mohebi, On quasi-Chebyshev subspaces of Banach spaces, J. Approx. Theory 
107(1) (2000), 87-95. 

g 


