SOME RESULTS ON *f*-WEAKLY CHEBYSHEV SUBSPACE IN APPROXIMATION THEORY

H. ARDAKANI and H. MAZAHERI

Department of Mathematics School of Science Payame noor University (P. n. u) Ardakan, Yazd Iran Department of Mathematics Yazd University Yazd Iran e-mail: hmazaheri@yazduni.ac.ir

Abstract

The concept of weakly-Chebyshev subspace is defined by Mohebi and Mazaheri. In this paper, we can replace the function $\|\cdot\|$ by a function f with least conditions, and also we shall define f-weakly Chebyshev subspaces similar to weakly Chebyshev subspaces and we shall obtain the same theorems and results at about these subspaces.

1. Introduction

Let X be a Hausdorff topological vector space over a field F and f is continuous function on X with the following conditions:

(1) $f(\alpha x) = |\alpha| f(x)$, for all $x \in X$ and scalar α .

(2) f(-x) = f(x), for all $x \in X$.

2000 Mathematics Subject Classification: 41A50, 41A52, 41A17, 54B15, 35E10.

Keywords and phrases: *f*-boundedly compact set, *f*-Chebyshev, *f*-proximinal, *f*-weakly Chebyshev.

Received August 12, 2009

© 2009 Scientific Advances Publishers

(3) f is convex, that is, $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$, for all $x, y \in X$ and $0 < \lambda < 1$.

An element $k_0 \in K$ is said to be an *f*-best approximation to *x* in *K*, if

$$f(x - k_0) = f(x - K) = \inf \{f(x - k) : k \in K\}.$$

We denote by $P_{K,f}(x)$, the collection of all such $k_0 \in K$. The set K is said to be *f*-proximinal, if $P_{K,f}(x)$ is non-empty for each $x \in X$ and *f*-*Chebyshev*, if $P_{K,f}(x)$ is exactly singleton for each $x \in X$.

Let *K* be a non-empty closed subset of *X*. We define

$$\hat{K}_f = \{x \in X : f(x) = f(x - K)\} = P_{K,f}^{-1}(\{0\}),$$

it is clear that $g_0 \in P_{K,f}(x)$, if and only if $x - g_0 \in \hat{K}$. Suppose r > 0. Then we put

$$S_r = \{ y \in X : f(x - y) \le r \}.$$

We say the set K is f-bounded, if there is r > 0 such that $f(k) \le r$ for every $k \in K$.

The set *K* is said to be *f*-boundedly compact, if for each $x \in X$ and for each r > 0, $K \bigcap S_r$ is compact.

By using the existence of elements of *f*-best approximation in Hausdorff topological vector spaces, certain results on fixed points were proved by Pai and Veermani. There are some results on *f*-approximation. In this paper, we shall obtain some relations between *f*-weakly Chebyshevity of the quotient spaces and its *f*-best-proximinality subsets of *X*. Also, the relations between the upper semi-continuous of metric projection $P_{K,f}$ and *f*-weakly Chebyshev subsets of *X* are discussed.

Let X and Y be non-empty sets. The collection of all non-empty subsets of X is denoted by 2^X . A multifunction or set-valued function from X to Y is defined to be a function that assigns to each element of X, a non-empty subset of Y. If T is a multifunction from X to Y, then it is designated as $T: X \to 2^Y$, and for every $x \in X$, Tx is called a value of T. For $A \subseteq X$, the image of A under T denoted by T(A), is defined as

$$T(A) \coloneqq \bigcup_{x \in A} Tx.$$

For $B \subseteq Y$, the preimage or inverse image of B under T, denoted by $T^{-1}(B)$, is defined as

$$T^{-1}(B) \coloneqq \{x \in X : Tx \bigcap B \neq \emptyset\}.$$

If $y \in Y$, then $T^{-1}(y)$ is called a *fibre* of *T*.

In what follows, it will be assumed that X and Y are topological spaces. A multifunction $T: X \to 2^Y$ is said to be *upper semi continuous*, if for every closed subset C of Y, its inverse image $T^{-1}(C)$ is closed in X.

It is known that if $T: X \to 2^Y$ is an upper semi continuous multifunction with compact values, then T(K) is compact in Y, whenever K is a compact subset of X. Let X be a topological space, f is a nonnegative function on X with the property $f(\alpha x) = \alpha f(x)$ for each scalar α and if $x \neq 0$, then $f(x) \neq 0$. Also define for $\Lambda \in X^*$

$$\delta_f(\Lambda) = \sup\{|\Lambda(x)| : f(x) = 1, x \in X\}.$$

We define

$$M_{\Lambda, f} = \{ x \in X : \Lambda(x) = f(x), f(x) = 1 \}.$$

It is clear that $M_{\Lambda,f}$ is closed, f-bounded, also if f is convex, then $M_{\Lambda,f}$ is convex.

We start with the following lemmas which need in the proof of new results.

Lemma 1.1. Let X be a topological vector space, and K be an fproximinal subset of X. Then, $P_{K,f}$ is upper semi continuous, if and only

if $F + \hat{K}_f$ is closed for every closed set F in K.

Lemma 1.2. Let K be an f-proximinal subset of a topological vector space X. If \hat{K}_f is f-boundedly weakly, then, the following are true:

- (1) $P_{K,f}$ is upper semi continuous.
- (2) $P_{K,f}(x)$ is compact for each $x \in K$.

Lemma 1.3. Let X be a topological space, Y be a closed subspace of X, and $g_0 \in Y$. Then $g_0 \in P_{Y,f}(x)$ iff there exists $\Lambda \in X^*$ such that

$$\delta_f(\Lambda) = 1, \ \Lambda(x - g_0) = f(x - g_0), \ \Lambda|_Y = 0.$$

Lemma 1.4. Let X be a topological space, Y be a closed subspace of X, $M \subseteq Y$, and $x \in X \setminus Y$. Then, the following statements are true:

(1) $M \subseteq P_{Y,f}(x)$.

(2) There exists $a \Lambda \in X^*$ such that $\delta_f(\Lambda) = 1$, $\Lambda|_Y = 0$, $\Lambda(x - g) = f(x - g)$ for every $g \in M$.

Definition 1.5. Let X be a topological space, Y be a closed subspace of X. If $P_{Y,f}(x)$ is a non-empty and weakly compact set in X for every $x \in X$, then Y is called an *f*-weakly Chebyshev subspace of X.

2. New Results

Theorem 2.1. Let X be a topological space and let Y be an fproximinal subspace of X. If $M_{\Lambda,f}$ is weakly for every $0 \neq \Lambda \in Y^{\perp}$, then Y is f-weakly Chebyshev in X.

Proof. Let $x \in X \setminus Y$ and $\{g_n\}_{n \ge 1}$ be an arbitrary sequence in $P_{Y,f}(x)$. Then, by Lemma 1.4, there exist $\Lambda_0 \in X^*$, $\delta_f(\Lambda_0) = 1$, $\Lambda_0|_Y = 0$, and $\Lambda_0(x - g_n) = f(x - g_n)$, (n = 1, 2, ...).

Let $x_n = x - g_n(n = 1, 2, ...)$, then $\Lambda_0(x_n) = f(x_n) = f(x - Y)$ for all $n \ge 1$. Put

$$z_n = \frac{x_n}{f(x_n)} = \frac{x_n}{f(x-Y)}, \quad (n = 1, 2, ...).$$

Then $\{z_n\}_{n\geq 1}$ is a sequence in $M_{\Lambda_0,f}, f(z_n)=1$, and $\Lambda_0(z_n)=1=\delta_f(\Lambda_0)$.

Since $M_{\Lambda_0, f}$ is weakly compact, hence there exists a convergent subsequence $\{z_{n_k}\}_{k\geq 1}$ of $\{z_n\}_{n\geq 1}$ such that $z_{n_k} \to z_0 \in M_{\Lambda_0, f}$. Therefore, we have $x_{n_k} \to z_0 f(x - Y)$ and hence $g_{n_k} \to x - z_0 f(x - Y)$ $\in Y$. But $P_{Y, f}(x)$ is closed, then $x - z_0 f(x - Y) \in P_{Y, f}(x)$.

Theorem 2.2. Let X be a Banach space and let Y be a proximinal subspace of X with codimension one. Then, the following are equivalent:

(a) Y is weakly-Chebyshev in X.

(b) Each sequence $\{y_n\}_{n\geq 1}$ in X with $||y_n|| = 1$ and $0 \in P_{Y,f}(y_n)$ (n = 1, 2, ...) has a weakly-convergent subsequence.

(c) M_f is weakly weakly for every $0 \neq f \in Y^{\perp}$.

Proof. (a) \Rightarrow (b). Assume that Y is weakly-Chebyshev in X, $\{y_n\}_{n\geq 1}$ is any sequence in X with $||y_n|| = 1$ and $0 \in P_{Y,f}(y_n)$. Since codim Y = 1, there exists $x_0 \in X$ such that $X = Y \oplus \langle x_0 \rangle$. Therefore, there exist a sequence $\{z_n\}_{n\geq 1}$ in Y and a sequence $\{\beta_n\}_{n\geq 1}$ of scalars (note that $\beta_n \neq 0$ for all n = 1, 2, ...) such that

$$y_n = z_n + \beta_n x_0, \quad (n = 1, 2, ...)$$

Now, we have

$$d(x_0, Y) = d\left(\frac{1}{\beta_n} y_n - \frac{1}{\beta_n} z_n, Y\right)$$
$$= d\left(\frac{1}{\beta_n} y_n, Y\right) = \frac{1}{|\beta_n|} d(y_n, Y)$$

$$= \frac{1}{|\beta_n|} \|y_n\| = \frac{1}{|\beta_n|}, \qquad (*)$$

and

$$||x_0 + \frac{1}{\beta_n} z_n|| = \frac{1}{|\beta_n|} ||y_n|| = \frac{1}{|\beta_n|},$$

for all $n \ge 1$. It follows that $\{-\frac{1}{\beta_n} z_n\}_{n\ge 1}$ is a sequence in $P_{Y,f}(x_0)$. Since $P_{Y,f}(x_0)$ is weakly weakly, $\{\frac{1}{\beta_n} z_n\}_{n\ge 1}$ has a weakly-convergent subsequence. Also, it follows by (*) that $\{\beta_n\}_{n\ge 1}$ is a bounded sequence of scalars. Hence, $\{z_n\}_{n\ge 1}$ has a weakly-convergent subsequence. Thus, $\{y_n\}_{n\ge 1}$ has a weakly-convergent subsequence in X.

(b) \Rightarrow (c). Suppose $0 \neq f \in Y^{\perp}$ and $\{y_n\}_{n \geq 1}$ is an arbitrary sequence in M_f . Then we have

$$f(y_n) = ||f||$$
 and $||y_n|| = 1$, $(n = 1, 2, ...)$.

Let $f_0 = \frac{f}{\|f\|}$. It follows that $f_0 \in X^*$, $\|f_0\| = 1$, $f_0|_Y = 0$, and $f_0(y_n) = 1$ = $\|y_n\|$ for all n = 1, 2, ... Then, by Lemma 1.4, $0 \in P_{Y,f}(y_n)$ and $\|y_n\| = 1$ (n = 1, 2, ...). Now, by hypothesis, $\{y_n\}_{n \ge 1}$ has a weakly-convergent subsequence in X. That is, there exists $\{y_{n_k}\}_{k\ge 1}$ such that $y_{n_k} \xrightarrow{w} y_0 \in X$. Since $M_{Y,f}$ is closed and convex, $M_{Y,f}$ is weakly closed and hence $y_0 \in M_{Y,f}$. Then, $M_{Y,f}$ is weakly weakly.

(c) \Rightarrow (a). This is a consequence of Theorem 2.1.

Theorem 2.3. Let X be a topological space, Y be an f-proximinal subspace of X. Then, the following two conditions are equivalent:

(1) Y is f-weakly Chebyshev.

244

(2) Each sequence $\{y_n\}$ in X with $f(y_n) = 1$, and $0 \in P_{Y,f}(y_n)$ has a

convergent subsequence.

(3) For each $\Lambda \in Y^{\perp}$, we have $M_{\Lambda, f}$ is weakly compact.

(4) $P_{Y,f}$ is upper semi-continuous.

References

- [1] Darapaneni Narayana and T. S. S. R. K. Rao, Some remarks on quasi-Chebyshev subspaces, J. Math. Anal. Appl. 321(1) (2006), 193-197.
- [2] H. Mohebi, On quasi-Chebyshev subspaces of Banach spaces, J. Approx. Theory 107(1) (2000), 87-95.